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We examine and analyze the appearance of a surface nonuniformity in a conduct- 
ing fluid under the action of an alternating electric field. 

In recent years continuing interest [1-3] has been shown in the question of mechanical 
stability of the surface of a conducting fluid in a constant electric field. Disruption 
of this stability is caused by the negative pressure acting on the fluid surface in an elec- 
tric field [4]. However, if the field is alternating, the surface may also lose stability 
parametrically, since in a uniform electric field the pressure is distributed uniformly over 
a uniform fluid surface [5]. If the surface is nonuniform (for example, if the surface con- 
tains inclusions that are chemically diverse, oxide films, adsorption materials, etc.), on 
imposition of an electric field the pressure over the surface is not distributed uniformly, 
as a consequence of which the surface is distorted in a constant electric field, while an 
alternating electric field may generate surface waves [6]. However, if the surface films 
are uniform (or if the nonuniformities are extended), in an alternating electric field we 
may find the possibility of a parametric loss of surface stability [7]. How can one disrupt 
the uniformity of such a surface? Most simply, by changing, in one way or another, the elec- 
trophysical properties of the film. For example, by means of light it is possible to achieve 
photoelectric transfer of the charge from the film to the ambient medium, i.e., to the out- 
side or to a conducting fluid (and vice versa). The possibility of photomechanical excita- 
tion of waves in Langmuir films was studied in [8, 9]; here we find an examination of wave 
excitation by means of light directly within films of an anisotropic structure (a type of 
"Langmuir forest"), but no consideration was given to the possibility of generating corre- 
sponding motion in the substrates. It is the purpose of this paper to study the wave motion 
of a conducting fluid coated with a dielectric (poorly conducting) film, with application 
to the fluid of a variable potential under conditions of inducing a nonuniform surface charge 
in the film through a photoeffect. Simultaneously, this will allow us to clarify the fre- 
quency of the electric field necessary for the profile of the surface-vibration amplitudes 
most exactly to correspond to the relief of the induced charge (the surface relief) or, in 
other words, to ascertain the adequacy of such recording. 

Thus, let the conducting fluid be covered with a film [exhibiting dielectric permit- 
tivity ~(~0)]. A potential of frequency m 0 is imposed on the conductor, and the value of 
the field strength E = E 0 cos mot (outside of the film) is inadequate [7] to cause the para- 
metric destabilization of the surface or to result in Tonks-Frenkel' instability. In this 
case no wavelike motion of the surface is excited. At some instant of time, let light be 
incident on the surface, with the distribution of light intensity over the surface in the 
form of I(x, y) (x, y are coordinates along the surface). Under conditions of linear photo- 
effects, in proportion to this intensity and to the time a charge q(x, y, t) begins to ac- 
cumulate within the film. If the irradiation is pulselike in nature, with the duration of 
the pulse small in comparison with the characteristic times of the wave processes at the 
surface (or small in comparison with m0-1), we can assume that the light instantaneously 
imparts a nonuniform relief to the surface, which subsequently does not change with time. 
Let us limit ourselves precisely to this case; the kinetics of accumulation (and satura- 
tion) of the charge in the film under conditions of prolonged irradiation is an independent 
problem. 
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If q(x, y) is the distribution of the charges in the film per unit area at various points 
on the surface, an additional pressure acts on the surface: pq = E0q(x, y) Re exp (im0t)/ 
2e(m0). Description of surface destabilization by means of the surface waves is achieved 
by a well-known method [i0] (see also [7, ii]). Solutions for the Navier-Stokes equations 
and for the equations of continuity are chosen in the form: 

v~ = a exp ( - -  loot + ik~x + kxz) + b exp ( - -  ioot + ik~x + Kz); 

vz ---- cexp (-- ROot + ik~x + kxz) -1- d exp (-- i%t + ik~x + Kz); 

p =  p e x p ( "  i~Oot + ik~x + k~Z); K =  k~ V ' l - -  " 2 tOo/vkx; 

v is the kinematic viscosity of the fluid which may depend on the frequency m 0, with consider- 
ation of the relaxation properties of the fluid (see [12, 13]). 

The z axis is directed perpendicular to the surface of the fluid from without. The 
solutions are substituted into the conditions for the stress-tensor component in the fluid 
at the film surface [14]: 

02~ haEf A2[ + (~,= + Ap) = 0 
~ h - - ~ - +  12(1--~ 2) 

andthecomponents of the velocity v x at the surface of the film are equal to zero. Here 
A2 = kx 4, ~ = Vz / ( - i~o)  ; 

Oz 7/~=o ~=pv ;  A p = - - ? - - ~ x 2  +ph; 

where Y is the effective coefficient of surface tension in the field: 7 = 71 + 72 - (2k) -l" 
E0/4z (Y1 and 72 are the coefficients of surface tension at the boundaries between the film 
and the ambient medium and the fluid, respectively). In Ap, in terms of Pk, we denote the 
corresponding Fourier expansion factor pq over the plane waves along the fluid surface; let 
us limit ourselves for the sake of simplicity to the case: 

pq (X, y) = pq (X) --  (2a) -1 /2  i dlex exp (ik~x) ph (k~). 

As a result of solving the system we find the values for the coefficients: 

]~x.O) 0 a = - - - - p h ;  c = - - i a ;  b==--a; 
9F 

�9 kx 2 ~'ek~: / ( " -  kx  d = t --R-- a; F=mo 
p K 

in which case 

7,e = ~? -'t- kx 2 (-- pfhmg + h a f f le'* ~ . 
12(1 _~2) ] 

The expressions that we have obtained for these coefficients allow us to determine the 
wavelike motion of a surface covered with a film for arbitrary distributions of the induced 
charges. For this we have to sum, respectively, the values of Vx, Vz, and p, treating them 
as Fourier components. Let us write out the expression for the displacement of the surface 
elements: 

t i v~{~=o __ (x, t) -- (2a) 2 dkx __ i% 
--oo 

exp (-- ira~ k ~ @ )  
_ ip -i,/~- ~ i dtex( K -  ttx ph exp(ikxx). 
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Obviously, if the expression in the parentheses in the last integral for some region of change 
in k x depends weakly on the values of the latter (for example, it is independent or linearly 
dependent), then for pa(x), whose distribution corresponds to such kx, the function $(x) 
is simply associated wfth pq(X). Thus, if pq(X) corresponds to Pk(kx) so that at a frequency 

,13 

m0 we find satisfied the inequality eu ~ vkz, ~ ~ le~ K--kx fl K , then F ~ ~02, IKI ~ kx, and 

the expression in parentheses under the integral in $(x, t) equal to kx, and therefore 

(x, t) = p-~ exp (' i~ot) pq (x). 

By means of the last expression with respect to the distribution ~(x) it is easy to restore 
pq(X) and, consequently, q(x). 

Let us note that equality F = 0 represents a dispersion relationship for determination 
of the spectrum of surface waves in a conducting fluid, where that surface is covered with 
an elastic film and subjected to an alternating electric field [7]. Since F serves as the 
denominator in the expressions for all coefficients, the largest destabilization amplitudes 
correspond to the minimum values of IFI. Moreover, naturally, the effect of surface-wave 
destabilization will be all the more pronounced, the larger the Fourier component Pk, i.e., 
if dimensions (geometric) of charge nonuniformities are commensurate with the excited wave- 
lengths. 

Let us present characteristic estimates, using the data of [8, 9]. For the intensity 
I = i0 z W/cm 2 of the optical radiation (hv = 2.10 -12 erg) with a pulse duration of ~ 1 Dsec 
we have the specific charge at the surface q = 0.5.101~ e/cm 2 (with a quantum photoeffect 
yield f = 10 -2 and an absorption efficiency from the film surface of x = 10-4). 

Let the characteristic length of the change in the intensity of the light field along 
the surface be equal to 1 mm. Then for the field E = 1 kV/cm applied to the surface at a 
frequency of 50 Hz, we will estimate the amplitude of the surface vibrations to be on the 
order of 0.i mm. 

NOTATION 

e, dielectric permittivity; m0, frequency; E, E 0, electric-field strengths; p, p , pres- 
sure; Vx, Vz, velocity components; kx, wave number; pf, Ef, ~, h, density, modulus o3 elas- 
ticity, Poisson coefficient, film thickness; ~, surface displacement; ~, n, P, kinematic 
and dynamic viscosities and the density of the fluid; Pk, Fourier pressure component; a, 
b, c, d, coefficients of the solution; Ozz, stress-tensor component. 
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